Inorg. Chem. 2004, 43, 4921–4926

Chiral Bisphosphinite Metalloligands Derived from a P-Chiral Secondary Phosphine Oxide

Eddie Y. Y. Chan, Qian-Feng Zhang, Yiu-Keung Sau, Samuel M. F. Lo, Herman H. Y. Sung, Ian D. Williams, Richard K. Haynes, and Wa-Hung Leung*

Department of Chemistry and Open Laboratory of Chirotechnology of the Institute of Molecular Technology for Drug Discovery and Synthesis, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, People's Republic of China

Received February 27, 2004

Interaction of PdCl₂(MeCN)₂ with 2 equiv of (*S*_P)-^IBuPhP(O)H (1H) followed by treatment with Et₃N gave [Pd-{(1)₂H}]₂(μ -Cl)₂ (**2**). Reaction of **2** with Na[S₂CNEt₂] or K[N(PPh₂S)₂] afforded Pd[(1)₂H](S₂CNEt₂) (**3**) or Pd[(1)₂H)-[N(PPh₂S)₂] (**4**), respectively. Treatment of **3** with V(O)(acac)₂ (acac = acetylacetonate) and CuSO₄ in the presence of Et₃N afforded bimetallic complexes V(O)[Pd(1)₂(S₂CNEt₂)]₂ (**5**) or Cu[Pd(1)₂(S₂CNEt₂)]₂ (**6**), respectively. X-ray crystallography established the *S*_P configuration for the phosphinous acid ligands in **3** and **6**, indicating that 1H binds to Pd(II) with retention of configuration at phosphorus. The geometry around Cu in **6** is approximately square planar with the average Cu–O distance of 1.915(3) Å. Treatment of **2** with HBF₄ gave the BF₂-capped compound [Pd{(1)₂BF₂}]₂(μ -Cl)₂ (**7**). The solid-state structure of **7** containing a PdP₂O₂B metallacycle has been determined. Chloride abstraction of **7** with AgBF₄ in acetone/water afforded the aqua compound [Pd{(1)₂BF₂}(H₂O)₂][BF₄] (**8**) that reacted with [NH₄]₂[WS₄] to give [Pd{(1)₂BF₂}]₂[μ -WS₄] (**9**). The average Pd–S and W–S distances in **9** are 2.385(3) and 2.189(3) Å, respectively. Treatment of [(η^6 -*p*-cymene)RuCl₂]₂ with 1H afforded the phosphinous acid adduct (η^6 -*p*-cymene)RuCl₂(1H) (**10**). Reduction of [Cp*RuCl₂]_x (Cp* = η^5 -C₅Me₅) with Zn followed by treatment with 1H resulted in the formation of the Zn(II) phosphinate complex [{Cp*Ru(η^6 -C₆H₅)}¹BuPO₂}]₂(ZnCl₂)₂ (**11**) that contains a Zn₂O₄P₂ eight-membered ring.

Introduction

The coordination chemistry of secondary phosphine oxides (sPOs) $R_2P(O)H$ (R = alkyl, aryl)¹⁻³ is of interest due to their applications to metal-catalyzed organic reactions and homogeneous catalysis.⁴⁻¹⁰ In solution, $R_2P(O)H$ is in tautomeric equilibrium with the phosphinous acid $R_2P(OH)$

 \ast Author to whom correspondence should be addressed. E-mail: chleung@ust.hk.

- Roundhill, D. M.; Sperline, R. P.; Beaulieu, W. B. Coord. Chem. Rev. 1978, 26, 263.
- (2) Walther, B. Coord. Chem. Rev. 1984, 60, 67.
- (3) Appleby, T.; Woollins, J. D. Coord. Chem. Rev. 2002, 235, 121.
- (4) (a) van Leeuwen, P. W. N. M.; Roobeek, C. F.; Wife, R. L.; Frijins, J. H. G. J. Chem. Soc., Chem. Commun. 1986, 31. (b) van Leeuwen, P. W. N. M.; Roobeek, C. F.; Frjins, J. H. G. Organometallics 1990, 9, 121.
- (5) Ghaffar, T.; Parkins, A. W. Tetrahedron Lett. 1995, 36, 8657.
- (6) (a) Han, L. B.; Tanaka, M. Chem. Commun. 1999, 5, 395. (b) Wicht, D. K.; Glueck, D. S. In Catalytic Heterofunctionalization; Togni, A., Grützmacher, H., Eds.; Wiley-VCH: Weinheim, 2001; Chapter 5.
- (7) (a) Li, G. Y.; Zheng, G.; Noonan, A. F. J. Org. Chem. 2001, 66, 8677.
 (b) Li, G. Y. Angew. Chem., Int. Ed. 2001, 40, 1513. (c) Li, G. Y. J. Org. Chem. 2002, 67, 3643. (d) Li, G. Y. J. Organomet. Chem. 2002, 653, 63.

10.1021/ic049744u CCC: \$27.50 © 2004 American Chemical Society Published on Web 07/16/2004

that can bind to transition metal ions via the phosphorus atom. Thus, reaction of sPOs with soft metal ions such as Pd(II) and Pt(II) results in the formation of the phosphinous acid complex M{PR₂(OH)}, which, in the presence of base, can be further reacted to give the metallacycle M{(R₂PO)₂H} (Scheme 1).^{1–3,7} Hydrogen-bonded M{(R₂PO)₂H} metallacycles have also been prepared by treatment of R₂P–X (X = Cl,¹¹ R'O,^{12,13} or C=CCF₃¹⁴) with metal ions via hydrolysis and nucleophilic attack at phosphorus. Recently, Li reported that Pd(II) in conjunction with 'Bu₂P(O)H is an active catalyst

- (8) Gobley, C. J.; van den Heuvel, M.; Abbadi, A.; de Vries, J. G. Tetrahedron Lett. 2000, 41, 2467.
- (9) Jiang, X. B.; Minaard, A. J.; Hessen, B.; Feringa, B. L.; Duchteau, A. L. L.; Andrien, J. G. O.; Boogers, J. A. F.; de Vries, J. G. Org. Lett. 2003, 5, 1503.
- (10) 1H has been used for Pd-catalyzed asymmetric allylic alkylation: Dai,
 W. M.; Yeung, K. Y.; Leung, W. H.; Haynes, R. K. *Tetrahedron:* Asymmetry 2003, 14, 2821.
- (11) Chatt, J.; Heaton, B. T. J. Chem. Soc. (A) 1968, 2745.
- (12) (a) Kong, P. C.; Roundhill, D. M. Inorg. Chem. 1972, 11, 749. (b) Kong, P. C.; Roundhill, D. M. J. Chem. Soc., Dalton Trans. 1974, 187.

Inorganic Chemistry, Vol. 43, No. 16, 2004 4921

for C–C coupling reactions.⁷ This prompts us to explore chiral Pd phosphinite catalysts based on P-chirogenic sPOs.¹⁵ In addition, P-chiral $[M\{(RR'P=O)_2\}]^-$ complexes are of special interest because they may serve as *O*,*O*-bidentate ligands^{16,17} that are analogues of acetylacetonate and $[N(R_2P=O)_2]^-$.

Although Pd-catalyzed cross coupling of P-chiral phosphonate diesters¹⁸ and oxidative addition of phenylphosphinates with $Pt(0)^{19}$ are known to proceed with retention of configuration at phosphorus, to our knowledge, the stereochemistry for binding of P-chiral sPOs to metal ions has not been established. Recently, Haynes and co-workers developed a multigram synthesis of a P-chiral sPO ^tBuPhP(O)H. Significantly, both the S_P and R_P isomers of ^tBuPhP(O)H could be isolated in enantiomerically pure form.²⁰ (S_P) -^tBuPhP(O)H (1H) has been used for metal-catalyzed asymmetric hydrogenation of imines⁹ and allylic alkylation,¹⁰ implying that 1H binds to metal ions stereoselectively. In this connection, we set out to investigate the stereochemistry for the reaction between 1H and Pd(II). Herein, we report on the synthesis and crystal structures of Pd(II) complexes with a P-chiral phosphinite ligand confirming that 1H binds to Pd with retention of configuration at phosphorus. The synthesis and crystal structures of bimetallic complexes containing the P-chiral bidentate, anionic metalloligand $[Pd(1)_2]^-$ will be described.

Experimental Section

General Considerations. Solvents were purified, distilled, and degassed prior to use. NMR spectra were recorded on a Bruker ALX 300 spectrometer operating at 300, 121.5, and 282.4 MHz for ¹H, ³¹P, and ¹⁹F, respectively. Chemical shifts (δ , ppm) were reported with reference to SiMe₄ (¹H and ¹³C), CF₃C₆H₅ (¹⁹F), and H₃PO₄ (³¹P). Infrared spectra were recorded on a Perkin-Elmer 16 PC FT-IR spectrophotometer, and mass spectra were recorded on

- (13) (a) Gould, R. O.; Jones, C. L.; Sime, W. J.; Stephenson, T. A. J. Chem. Soc., Dalton Trans. 1977, 669. (b) Cornock, M. C.; Gould, R. O.; Jones, C. L.; Stephenson, T. A. J. Chem. Soc., Dalton Trans. 1977, 1307.
- (14) Naik, D. V.; Palenki, G. J.; Jacobson, S. E.; Carty, A. J. J. Am. Chem. Soc. 1974, 96, 2286.
- (15) Pietrussiewicz, K. M.; Zablocka, M. Chem. Rev. 1994, 94, 1375.
 (16) Sperline, R. P.; Dickson, M. K.; Roundhill, D. M. J. Chem. Soc., Chem.
- *Commun.* **1977**, 52.
- (17) Sperline, R. P.; Roundhill, D. M. Inorg. Chem. 1977, 16, 2612.
- (18) Johansson, T.; Stawinski, J. Chem. Commun. 2001, 2564.
- (19) Han, L.-B.; Zhao, C.-Q.; Onozawa, S.-y.; Goto, M.; Tanaka, M. J. Am. Chem. Soc. 2002, 124, 3842.
- (20) (a) Haynes, H. K.; Freeman, R. N.; Mitchell, C. R.; Vonwiller, S. C. J. Org. Chem. **1994**, 59, 2919. (b) Haynes, R. K.; Au-Yeung, T. L.; Chan, W. K.; Lam, W. L.; Li, Z. Y.; Yeung, L. L.; Chan, A. C. S.; Li, P.; Koen, M.; Mitchell, C. R.; Vonwiller, S. C. Eur. J. Org. Chem. **2000**, 3205.

a Finnigan TSQ 7000 spectrometer. Elemental analyses were performed by Medac Ltd., Surrey, UK.

Materials. (*S*_P)-^tBuPhP(O)H (1H),²⁰ PdCl₂(MeCN)₂,²¹ and K[N(Ph₂PS)₂]²² were prepared according to literature methods. [NH₄]₂[WS₄] and [(η^6 -*p*-cymene)RuCl₂]₂ were purchased from Aldrich Ltd.

Preparation of $[Pd{(1)_2H}]_2(\mu-Cl)_2$ (2). Compound 2 was prepared according to Li's procedure.⁷ To a solution of PdCl₂- $(MeCN)_2$ (71 mg, 0.274 mmol) in CH₂Cl₂ (15 mL) was added 1H (100 mg, 0.549 mmol), and the mixture was stirred at roomtemperature overnight, during which time the color changed from orange to yellow. The volatiles were removed and the residue was extracted into hexane $(3 \times 25 \text{ mL})$. Et₃N (0.211 g, 2.089 mmol) in CH₂Cl₂ (15 mL) was added and the resulting mixture was stirred at room temperature for an additional 3 h. The solvents were removed in vacuo and the residue was recrystallized from Et₂O/ hexane to give yellow crystals. Yield: 99 mg (72%). ¹H NMR (acetone- d_6): δ 1.28 (d, ${}^{3}J(PH) = 16.5$ Hz, 36H), 7.67 (m, 12H), 8.05-8.10 (m, 8H); the O-H proton signal was not observed. ³¹P-{¹H} NMR (acetone- d_6): δ 95.6 (s). MS (FAB): m/z 1010 (M⁺ + 1). Anal. Calcd for C₄₀H₅₈Cl₂O₄P₄Pd₂: C, 47.5; H, 5.74. Found: C, 47.1; H, 5.88.

Preparation of Pd[(1)₂H](S₂CNEt₂) (3). To a solution of **2** (60 mg, 0.059 mmol) in acetone (15 mL) was added Na[S₂CNEt₂]· $3H_2O$ (27 mg, 0.119 mmol), and the reaction mixture was stirred at room-temperature overnight. The volatiles were removed and the residue was recrystallized from Et₂O/hexane to give pale yellow crystals suitable for X-ray diffraction analysis. Yield: 35 mg (48%). ¹H NMR (acetone- d_6): δ 1.17 (d, ³*J*(PH) = 15.6 Hz, 18H), 1.46 (t, J = 7.2 Hz, 6H), 4.03 (q, J = 7.2 Hz, 4H), 7.61 (m, 6H), 8.05–8.10 (m, 4H). ³¹P{¹H} NMR (acetone- d_6): δ 96.9. MS (FAB): m/z 619 (M⁺ + 1). Anal. Calcd for C₂₅H₃₉NS₂O₂P₂Pd: C, 48.6; H, 6.36; N, 2.27. Found: C, 48.6; H, 6.52; N, 2.21.

Preparation of Pd[(1)₂H][N(Ph₂PS)₂] (4). This compound was prepared similarly as for **3** using K[N(Ph₂PS)₂] (55 mg, 0.112 mmol) in place of Na[S₂CNEt₂]·3H₂O, and recrystallized from Et₂O/ hexane. Yield: 58 mg (56%). ¹H NMR (acetone-*d*₆): δ 1.18 (d, ³*J*(PH) = 15.3 Hz, 18H), 7.37–8.19 (m, 30H). ³¹P{¹H} NMR (acetone-*d*₆): δ 96.2 (s), 38.7 (s). MS (FAB): *m*/*z* 918 (M⁺ + 1). Anal. Calcd for C₄₄H₄₉NS₂O₂P₄Pd·1/2C₆H₁₄·H₂O: C, 57.7; H, 5.93; N, 1.43. Found: C, 57.1; H, 5.95; N, 1.42.

Preparation of V(O)[Pd{(1)₂}(S₂CNEt₂)]₂ (5). To a solution of VO(acac)₂ (6 mg, 0.021 mmol) in acetone (10 mL) was added **3** (26 mg, 0.042 mmol), and the mixture was stirred overnight. The volatiles were removed in vacuo and the residue was recrystallized from Et₂O/hexane to give a yellow powder. Yield: 12 mg (43%). IR (KBr, cm⁻¹): 1015 ($v_{V=O}$). MS (FAB): m/z 1302 (M⁺ + 1). Anal. Calcd for C₅₀H₇₆N₂O₅P₄S₄Pd₂V·H₂O: C, 45.4; H, 5.91; N, 2.12. Found: C, 45.4; H, 5.94; N, 2.08.

Preparation of Cu[Pd{(1)₂**(S**₂**CNEt**₂**)**]₂ (6). To a solution of CuSO₄·5H₂O (6 mg, 0.024 mmol) in MeOH (10 mL) was added **3** (30 mg, 0.048 mmol), and then an excess of Et₃N (0.1 mL) was added. The mixture was stirred at room temperature for 10 min. The blue precipitate was collected and recrystallized from CH₂-Cl₂/Et₂O to give pale blue crystals suitable for X-ray analysis. Yield: 18 mg (58%). MS (FAB): m/z 1299 (M⁺ + 1). Anal. Calcd for C₅₀H₇₆N₂CuO₄P₄S₄Pd₂: C, 45.6; H, 5.93; N, 2.13. Found: C, 45.9; H, 6.03; N, 2.05.

Preparation of $[Pd{(1)_2BF_2}]_2(\mu$ -Cl)₂ (7). To a solution of 2 (52 mg, 0.051 mmol) in Et₂O (15 mL) was added HBF₄ (0.2 mL

(22) Wang, F. T.; Najdzionek, J.; Leneker, K. L.; Wasserman, H.; Braitsch, D. M. Synth. React. Inorg. Met.-Org. Chem. 1978, 8, 120.

⁽²¹⁾ Anderson, G. K.; Lin, M. Inorg. Synth. 1990, 28, 60.

Table 1. Crystallographic Data and Experimental Details for Complexes 2, 6, 7, 9, and 11

compound	2	6	7	9	11
formula	$C_{26}H_{39}O_2P_2S_2Pd$	$C_{50}H_{76}N_2O_4P_4S_4CuPd_2$	$C_{40}H_{56}B_2O_4F_4P_4Cl_2Pd_2$	$C_{40}H_{56}B_2O_4F_4P_4S_4Pd_2W$	$C_{40}H_{58}O_4P_6Cl_4Zn_2Ru_2$
fw	618.03	1297.59	1106.05	1347.24	1139.48
<i>a</i> , Å	9.5361(8)	10.298(2)	17.4581(8)	14.9250(17)	12.0114(10)
<i>b</i> , Å	15.3206(12)	11.961(2)	16.6780(8)	10.5019(12)	13.8565(12)
<i>c</i> , Å	20.0421(16)	46.690(9)	18.0894(9)	16.968(2)	15.0639(13)
α, deg	90	90	90	90	85.173(2)
b, deg	90	90	115.650(1)	112.281(2)	87.444(2)
γ, deg	90	90	90	90	72.980(2)
V, Å ³	2928.1(4)	5751(2)	4747.8(4)	2461.0(5)	2375.0(4)
Ζ	4	4	4	2	2
cryst syst	orthorhombic	orthorhombic	monoclinic	monoclinic	triclinic
space group	$P2_{1}2_{1}2_{1}$	$P2_{1}2_{1}2_{1}$	$P2_{1}$	P21	$P\overline{1}$
$\rho_{\rm calcd} {\rm g} \cdot {\rm cm}^{-3}$	1.397	1.499	1.547	1.818	1.593
Т, К	293(2)	100(2)	100(2)	100(2)	100(2)
$m, { m mm^{-1}}$	0.906	1.284	1.058	3.408	1.950
F(000)	1276	2668	2240	1328	1152
no. of reflns	17972	35509	28686	12257	17038
no. of indep reflns	6923	12131	20362	6599	8250
R _{int}	0.0290	0.0521	0.0199	0.0580	0.0408
$R1^a, wR2^b(I \ge 2s(I))$	0.0397, 0.0868	0.0480, 0.0800	0.0303, 0.0669	0.0388, 0.0687	0.0484, 0.1015
R1, $wR2$ (all data)	0.0564, 0.0942	0.0562, 0.0827	0.0323, 0.0679	0.0595, 0.0739	0.0741, 0.1082
GOF ^c	1.020	1.059	1.017	0.843	0.990
Flack parameter	-0.02(3)	-0.013(13)	-0.023(10)	0.005(7)	
^{<i>a</i>} $R1 = \sum 1/2 F_o - F_c 1/2\sum F_o $. ^{<i>b</i>} $wR2 = [\sum w(F_o^2 - F_c^2)^2 \sum w F_o^2 ^2]^{1/2}$. ^{<i>c</i>} GOF $= [\sum w(F_o - F_c)^2 / (N_{obs} - N_{param})]^{1/2}$.					

of a 54% solution in Et₂O, 1.45 mmol) at 0 °C, and the mixture was stirred at room temperature for 30 min. The solvent was removed in vacuo and the residue was washed with hexane and recrystallized from Et₂O/hexane to give pale yellow crystals suitable for X-ray diffraction (yield: 25 mg, 43%). ¹H NMR (CDCl₃): δ 1.17 (d, ³*J*(PH) = 17.4 Hz, 36H), 7.44–7.49 (m, 12H), 7.94–8.05 (m, 8H). ³¹P{¹H} NMR (CDCl₃): δ 111.4 (s). ¹⁹F{¹H} NMR (CDCl₃): δ –138.2. MS (FAB): *m*/*z* 1106 (M⁺ + 1). Anal. Calcd for C₄₀H₅₆B₂Cl₂F₄O₄P₄Pd₂·H₂O: C, 42.7; H, 5.16. Found: C, 42.9; H, 5.39.

Preparation of [Pd{(1)₂BF₂}(H₂O)₂][BF₄] (8). To a solution of 7 (65 mg, 0.059 mmol) in acetone/H₂O (15 mL, 10:1) was added AgBF₄ (24 mg, 0.122 mmol), and the mixture was stirred at room temperature for 2 h. The solution was filtered and evaporated to dryness. Recrystallization from acetone/CH₂Cl₂/hexane afforded pale yellow crystals. Yield: 30 mg (69%). ¹H NMR (acetone-*d*₆): δ 1.21 (d, ³*J*(PH) = 17.1 Hz, 18H), 4.75 (s br., 4H), 7.74–7.96 (m, 6H), 8.05–8.17 (m, 4H). ³¹P{¹H} NMR (acetone-*d*₆): δ 110.2 (s). ¹⁹F NMR (acetone-*d*₆): δ –137.7 (BF₂), –149.3 (BF₄). MS (FAB): *m*/*z* 518 (M⁺ – 2H₂O – BF₄ + 1). Anal. Calcd for C₂₀H₃₂B₂F₆O₄P₂Pd·2Me₂CO: C, 41.3; H, 5.86. Found: C, 40.3; H, 5.65.

Preparation of [Pd{(1)₂BF₂}]₂(μ -WS₄) (9). To a solution of [NH₄]₂[WS₄] (5 mg, 0.015 mmol) in acetone (10 mL) was added **8** (20 mg, 0.031 mmol), and the mixture was stirred for 3 h. The solvent was removed in vacuo and the residue was recrystallized from CH₂Cl₂/hexane to give pale yellow needles. Yield: 12 mg (59%). ¹H NMR (acetone- d_6): δ 1.38 (d, ³*J*(PH) = 17.7 Hz, 36H), 7.72 (m, 12H), 8.14 (m, 8H). ³¹P{¹H} NMR (acetone- d_6): δ -136.6. MS (FAB): m/z 1327 (M⁺ – F). Although **9** has been fully characterized by spectroscopic methods and X-ray diffraction, we have not been able to obtain satisfactory elemental analyses for the compound.

Preparation of (η^6 -*p*-cymene)**Ru**(1**H**)**Cl**₂ (10). To a solution of [(η^6 -*p*-cymene)**Ru**(l₂]₂ (75 mg, 0.125 mmol) in CH₂Cl₂ (15 mL) was added 1**H** (50 mg, 0.275 mmol), and the mixture was stirred at room-temperature overnight. The residue was washed with Et₂O and hexane, and then extracted into CH₂Cl₂. Recrystallization from CH₂Cl₂/hexane gave an orange powder. Yield: 35 mg (32%). ¹H NMR (acetone-*d*₆): δ 1.25 (dd, J_1 = 6.0 Hz, J_2 = 48 Hz, 6H), 1.42 (d, ³*J*(PH) = 16.4 Hz, 9H), 2.12 (s, 3H), 2.80 (q, *J* = 6.0 Hz, 1H), 5.89 (d, *J* = 6.0 Hz, 2H), 6.61 (d, *J* = 6.0 Hz, 2H), 7.71–7.80 (m, 3H), 8.03–8.12 (m, 2H). ³¹P{¹H} NMR (acetone-*d*₆): δ 118.0 (s). MS (FAB): *m*/z 490 (M⁺ + 1). Anal. Calcd for C₂₀H₂₉Cl₂OPRu• 1/2CH₂Cl₂: C, 46.3; H, 5.64. Found: C, 46.2; H, 5.74.

Preparation of [{**Cp*****Ru**(η^{6} -**C**₆**H**₅)}^t**BuPO**₂]₂(**ZnCl**)₂ (11). [Cp*RuCl₂]_x was reduced by Zn in the presence of NH₄PF₆ in MeCN according to a literature method.²³ After filtration, the crude product was treated with 1H (110 mg, 0.60 mmol) and Et₃N (65 mg, 0.60 mmol) in THF (10 mL). The mixture was stirred for 30 min during which the solution turned brown. The solvent was removed in vacuo, and the residue was recrystallized from CH₂-Cl₂/Et₂O to give yellow single crystals. Yield: 54 mg (35%). ¹H NMR (DMSO-*d*₆): δ 0.96 (d, ³*J*(PH) = 7.2 Hz, 18H), 1.89 (s, 30H), 5.93 (m, 10H). ³¹P{¹H} NMR (DMSO-*d*₆): δ 149.8 (s). MS (FAB): *m*/*z* 569 (1/2M⁺ + 1). Anal. Calcd for C₄₀H₅₈Cl₄O₄P₂Ru₂-Zn₂·1/2CH₂Cl₂: C, 41.2; H, 5.00. Found: C, 41.8; H, 4.69.

X-ray Diffraction Measurements. A summary of crystallographic data and experimental details for complexes **3**, **6**, **7**, **9**, and **11** are compiled in Table 1. Intensity data were collected on a Bruker SMART APEX 1000 CCD diffractometer using graphitemonochromated Mo K α radiation ($\lambda = 0.71073$ Å) at 100(2) K. The collected frames were processed with the software SAINT. Structures were solved by the direct methods and refined by fullmatrix least-squares on F^2 using the SHELXTL²⁴ software package. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed in idealized positions (C-H bond fixed at 0.96 Å).

Results and Discussion

Pd[(1)₂H] Complexes. The preparations of complexes containing the Pd[(1)₂H] metallacycle are summarized in Scheme 2. The starting material $[Pd\{(1)_2H\}]_2(\mu$ -Cl)₂ (**2**) was synthesized from PdCl₂(MeCN)₂ and **1**H in the presence of

⁽²³⁾ Steinmatz, B.; Schenk, W. A. Organometallics 1999, 18, 943.

⁽²⁴⁾ Sheldrick, G. M. SHELXTL-Plus V5.1 Software Reference Manual; Bruker AXS Inc.: Madison, WI, 1997.

 a Reagents and conditions: (i) PdCl₂(MeCN)₂, Et₃N, CH₂Cl₂; (ii) Na(S₂CNEt₂)·3H₂O or K[N(PPh₂S)₂], acetone; (iii) CuSO₄·5H₂O/Et₃N or VO(acac)₂; (iv) HBF₄, Et₂O; (v) AgBF₄, acetone/H₂O; (vi) [NH₄]₂[WS₄], acetone.

Et₃N in 72% yield according to Li's procedure.⁷ **2** is soluble in most common organic solvents except hexanes, and is air stable in both the solid state and solution. The IR spectrum shows P–O stretches at 1032 and 1096 cm⁻¹ and the O–H stretch at 1261 cm⁻¹, characteristic for symmetrical O···H···O hydrogen bonding.^{1,2} The ³¹P {¹H} NMR spectrum of crude **2** shows a singlet δ 95.6, which is more downfield than that for **1**H (δ 44.8),²⁰ indicating that the sample mostly contained a single diastereomer.

As expected, treatment of dimeric 2 with bidentate sulfur ligands resulted in cleavage of the chloro bridges and the formation of mononuclear complexes. For example, treatment of 2 with $Na[S_2CNEt_2]$ and $K[N(SPPh_2)_2]$ led to the formation of Pd[(1)₂H](S₂CNEt₂) (3) and Pd[(1)₂H][N(Ph₂- PS_{2} (4), respectively. It may be noted that the achiral analogue Pd[(Ph₂PO)₂H](S₂CNEt₂) has been prepared from Pd(S₂CNEt₂)₂ and PPh₂(OMe) previously.^{12a} X-ray crystallography confirmed that **3** is chiral and the phosphinous acid ligands possess the S_P configuration (Figure 1). The Pd-P, Pd-S, and P-O distances in 3 [2.303(1), 2.387(1), and 1.550(3) Å, respectively] are similar to those in Pd[(Ph₂-PO)₂H](S₂CNEt₂).^{12a} Like 2, the IR spectra for 3 and 4 show the symmetrical O···H···O vibrational modes and the absence of v_{OH} in the normal 3000-3500 cm⁻¹ region. The ³¹P {¹H} NMR spectrum of **3** in CDCl₃ exhibited a single resonance at δ 98.7 ppm, indicating that a single diastereomer was present in the sample. By contrast, reaction of racemic (S_P and R_P) ^tBuPhP(O)H with PdCl₂(MeCN)₂ and Na(S₂-CNEt₂) gave a product that exhibited two ³¹P resonances at

Figure 1. Perspective view of $Pd\{(1_2)H\}(S_2CNEt_2)$ (3) (30% probability ellipsoids shown). Selected bond lengths (Å) and angles (deg): Pd(1)-P(1) 2.302(1), Pd(1)-P(2) 2.304(1), Pd(1)-S(1) 2.377(1), Pd(1)-S(2) 2.396(1), P(1)-O(1) 1.555(3), P(2)-O(2) 1.545(3); P(1)-Pd(1)-S(1) 97.2-(4), P(2)-Pd(1)-S(1) 170.3(4), P(1)-Pd(1)-S(2) 170.5(4), P(2)-Pd(1)-S(2) 97.0(4), S(1)-Pd(1)-S(2) 73.4(4).

Figure 2. Perspective view of $Cu[Pd(1)_2(Et_2NCS_2)]_2$ (6) (30% probability ellipsoids shown). Selected bond lengths (Å) and angles (deg): Cu(1) - O(1) 1.927(3), Cu(1) - O(2) 1.914(3), Cu(1) - O(3) 1.897(3), Cu(1) - O(4) 1.922(3), Pd(1) - P(1) 2.284(1), Pd(1) - P(2) 2.302(1), Pd(2) - P(4) 2.305(1), Pd(1) - P(2) 2.302(1), Pd(2) - P(4) 2.305(1), Pd(1) - S(1) 2.412(1), Pd(1) - S(2) 2.393(1), Pd(2) - S(3) 2.398(1), Pd(2) - S(4) 2.395(1); O(2) - Cu(1) - O(1) 90.1(1), O(3) - Cu(1) - O(4) 91.6(1), O(2) - Cu(1) - O(4) 92.4(1), O(3) - Cu(1) - O(4) 97.8(1), O(4) - Cu(1) - O(1) 169.4(1).

 δ 98.7 and 100.4 ppm assignable to the racemic ($S_{\rm P}$, $S_{\rm P}$ and $R_{\rm P}$, $R_{\rm P}$) and meso ($S_{\rm P}$, $R_{\rm P}$) isomers of **3**, respectively. Thus, the ³¹P NMR and X-ray diffraction results confirmed that the sPO **1**H tautomerizes to the phosphinous acid $S_{\rm P}$ -¹BuPhP-(OH) that binds to Pd(II) with retention of configuration at the phosphorus.

Bimetallic Complexes. As previously reported, **2** and **3** can serve as anionic *O*,*O*-bidentate metalloligands for transition metal ions.¹⁶ For example, treatment of **3** with VO-(acac)₂ (acac = acetylacetone) and CuSO₄•5H₂O in the presence of Et₃N led to formation of trinuclear V(O)[Pd-{(1)₂}(S₂CNEt₂)]₂ (**5**) and Cu[Pd{(1)₂}(S₂CNEt₂)]₂ (**6**), respectively. The structure of **6** has been established by X-ray diffraction. Figure 2 shows a perspective view of the molecule confirming the *S*_P configuration for the phosphinous acid ligands in **6**. The geometry around Cu is approximately square planar with the Cu atom ca. 0.14 Å above the O₄ plane. The two six-membered CuO₂P₂Pd metallacycles are found to adopt a puckered chair conformation. The average Cu–O distance in **6** (1.915(3) Å) is comparable to that in

Figure 3. Perspective view of one of the two independent molecules in the asymmetric unit of $[Pd\{(1)_2BF_2\}]_2(\mu$ -Cl)₂ (7) (30% probability ellipsoids shown). Selected bond lengths (Å) and angles (deg): Pd(1)-P(1) 2.268-(1), Pd(1)-P(2) 2.273(1), Pd(2)-P(3) 2.261(1), Pd(2)-P(4) 2.250(1), Pd(3)-P(5) 2.261(1), Pd(3)-P(6) 2.248(1), Pd(4)-P(7) 2.262(1), Pd(4)-P(8) 2.269(1), P(1)-O(1) 1.574(2), P(2)-O(2) 1.568(2), P(3)-O(3) 1.563(2), P(4)-O(4) 1.558(2), P(1)-Pd(1)-P(2) 89.7(3), P(3)-Pd(2)-P(4) 90.0-(3), P(5)-Pd(3)-P(6) 90.9(3), P(7)-Pd(4)-P(8) 90.7(3).

Cu[N(PPh₂O)₂]₂ (1.918(2) Å).²⁵ The Pd–P and P–O distances (av 2.292(2) and 1.542(3) Å, respectively) are similar to those in **3**.

BF₂-Capped Complexes. Treatment of **2** with HBF₄ in Et₂O led to the formation of the BF₂-capped complex [Pd-{(**1**)₂BF₂}]₂(μ -Cl)₂ (**7**). Compounds containing MP₂O₂BF₂ metallacycles have been prepared previously.²⁶ The presence of the BF₂ group in **7** is evidenced by ¹⁹F NMR (δ –138) and IR spectroscopy (884 cm⁻¹ (ν _{BF})). The ³¹P resonance for **7** at δ 111.4 is more downfield than that for **2**. The crystal structure of **7** has been determined. The asymmetric unit of **7** consists of two independent molecules. A perspective view of one such molecule is shown in Figure 3. The crystal structure confirms the *S*_P configuration for the phosphinous acid ligands in **7**. The Pd–P distances in the range of 2.248-(1) to 2.273(1) Å are shorter than those in **3**. The P–O and B–O distances (av 1.558(2) and 1.476(3) Å, respectively) are typical for MP₂O₂BF₂ metallacycles.^{26c}

Chloride abstraction of **7** with AgBF₄ in acetone/water resulted in the formation of the aquo complex $[Pd\{(1)_2BF_2\}-(H_2O)_2][BF_4]$ (**8**) that exhibited ν_{OH} at 3436 cm⁻¹ in the IR spectrum. Complex **8** can serve as a building block for trinuclear complexes upon replacing the labile aquo ligands with tetrathiometalates. For example, treatment of **8** with $[NH_4]_2[WS_4]$ in acetone led to isolation of $[Pd\{(1)_2BF_2\}]_2-(\mu-WS_4)$ (**9**). The FAB mass spectrum displayed the molecular ion signal at m/z 1327 corresponding to the molecular ion M⁺ – F. The IR spectrum shows ν_{WS} at 478 cm⁻¹ that is lower than for uncomplexed $[WS_4]^{2-}$ (509 cm⁻¹).²⁷ The

- (25) Silvestru, A.; Rotar, A.; Drake, J. E.; Hursthouse, M. B.; Light, M. E.; Farcas, S. I.; Rosler, R.; Silvestru, C. Can. J. Chem. 2001, 79, 983.
- (26) (a) Kong, P. C.; Roundhill, D. M. *Inorg. Chem.* **1972**, *11*, 749. (b) Dixon, K. R.; Rattray, A. D. *Inorg. Chem.* **1977**, *16*, 209. (c) Heuer, L.; Jones, P. G.; Schmitzler, R. *New. J. Chem.* **1990**, *14*, 891.
- (27) Müller, A.; Diemann, E.; Jostes, R.; Bögge, H. Angew. Chem., Int. Ed. Engl. 1981, 20, 934.

Figure 4. Perspective view of $[Pd\{(1)_2BF_2\}]_2(\mu-WS_4)$ (9) (30% probability ellipsoids shown). Selected bond lengths (Å) and angles (deg): W(1)–S(1) 2.188(3), W(1)–S(2) 2.187(3), W(1)–S(3) 2.191(3), W(1)–S(4) 2.188-(3), Pd(1)–S(1) 2.386(3), Pd(1)–S(2) 2.369(3), Pd(2)–S(3) 2.387(3), Pd(2)–S(4) 2.398(3), Pd(1)–P(1) 2.303(3), Pd(1)–P(2) 2.320(3), Pd(2)–P(3) 2.304(3), Pd(2)–P(4) 2.291(3), W(1)•••Pd(1) 2.931(1), W(1)•••Pd(2) 2.940(1); S(2)–W(1)–S(4) 109.7(1), S(2)–W(1)–S(1) 105.8(1); S(4)–W(1)–S(1) 112.6(1), S(2)–W(1)–S(3) 111.0(1), S(4)–W(1)–S(3) 106.3-(1), S(1)–W(1)–S(3) 111.6(1), W(1)–S(1)–Pd(1) 79.6(1), W(1)–S(2)–Pd(1) 80.0(1), W(1)–S(3)–Pd(2) 79.8(1), W(1)–S(4)–Pd(2) 79.6(1), Pd(1)•••Pd(2) 176.2(3).

solid-state structure of 9 featuring the $S_{\rm P}$ configuration has been characterized by X-ray diffraction (Figure 4). Whereas heterometallic clusters based on [WS₄]²⁻ are well documented,²⁸ 9 is a rare example of such clusters containing stereogenic P-donor ligands. The geometry around Pd is square-planar and that around W is approximately tetrahedral (S-W-S') angles ranging from 105.8(1) to 112.6(1)°). The average Pd-S bond distance of 2.385 Å in 9 is slightly longer than that in $Pd(dppe)(WS_4)$ (dppe = $Ph_2PCH_2CH_2$ - PPh_2) (2.232(3) Å),²⁹ whereas the Pd-P distances (av 2.305-(3) Å) are shorter than those in the latter (2.270(3) Å). Because of the longer Pd-S distances, the average Pd····W separation of 2.935(1) Å in 9 is longer than that in Pd(dppe)- (WS_4) (2.887(2) Å).²⁹ Like other trinuclear heterothiometallic complexes,²⁸ the $Pd(1)\cdots W(1)\cdots Pd(2)$ unit is approximately linear $(176.2(3)^\circ)$. The W-S distances in the range from 2.188(3) to 2.191(3) Å are slightly longer than those in [NH₄]₂[WS₄] (av 2.17 Å).³⁰

Ruthenium Complexes. Tripodal P=O ligands based on $(\eta^{6}\text{-arene})\text{Ru}(\text{II})^{31}$ and Cp*Ru $(\text{II})^{32}$ phosphinite complexes were found to exhibit interesting coordination chemistry. To this end, efforts were made to synthesize Ru complexes with P-chiral phosphinous acid ligands. Treatment of $[(\eta^{6}\text{-}p\text{-}cymene)\text{RuCl}_{2}]_{2}$ with 1H afforded $(\eta^{6}\text{-}p\text{-}cymene)\text{Ru}(1\text{H})\text{Cl}_{2}$ (10) characterized by MS and NMR spectroscopy. Attempts to prepare a bis-phosphinite compound by reacting $[(\eta^{6}\text{-}p\text{-}cymene)\text{RuCl}_{2}]_{2}$ with excess 1H were not successful. Chlo-

- (28) Hou, H. W.; Xin, X. Q.; Shi, S. Coord. Chem. Rev. 1996, 153, 25.
 (29) Wu, B.; Zhang, W.; Huang, X.; Wu, X.; Yu, S. Polyhedron 1997, 16, 801.
- (30) Sasvari, K. Acta Cryst. 1963, 36, 3090.
- (31) (a) Kläui, W.; Buchholz, E. Angew. Chem., Int. Ed. Engl. 1988, 27,
- 580. (b) Kläui, W.; Buchholz, E. *Inorg. Chem.* **1988**, *27*, 3500. (32) Rüther, T.; Englert, U.; Koelle, U. *Inorg. Chem.* **1998**, *37*, 4265.
 - Inorganic Chemistry, Vol. 43, No. 16, 2004 4925

ride abstraction of **10** with AgBF₄ followed by treatment with **1**H resulted in an intractable oil. Although X-ray diffraction data are not available, it seems likely that the phosphinous acid ligand in **10** also has the S_P configuration.

In an attempt to synthesize a Cp*Ru complex containing **1**H, $[Cp*RuCl_2]_x$ was reduced by Zn and subsequently reacted with 1H. However, instead of a Cp*Ru phosphinite complex, a dinuclear Zn(II) phosphinate complex [{Cp*Ru- $(\eta^{6}-C_{6}H_{5})$ ^tBuPO₂]₂(ZnCl₂)₂ (11) was isolated (Scheme 3). Apparently, the Zn in **11** was derived from ZnCl₂ produced by Zn reduction of $[Cp*RuCl_2]_x$. Although the mechanism for formation of 11 is not clear, it seems likely that binding of Cp*Ru(II) to the phenyl ring in 1H and air oxidation of the phosphine oxide to phosphinate are involved. No reaction was found between ZnCl₂ and 1H. Complex 11 exhibited a simple ¹H NMR spectrum indicative of high symmetry of the molecule. The solid-state structure of 11 has been established by X-ray diffraction. The asymmetric unit of 11 consists of two independent molecules. A perspective view of one such molecule is shown in Figure 5. The structure can be viewed as consisting of two ZnCl₂ moieties bridged by two zwitterionic $\{Cp^*Ru(\eta^6-C_6H_5)\}^+({}^{t}Bu)PO_2^-$ ligands. The molecule is related by an inversion center located at the center of the eight-membered $P_2O_4Zn_2$ ring that has a pseudo chair conformation. The coordination geometry of Zn is tetrahedral with bond angles ranging from 106.4(1) to 111.4(2)°. The average Zn-O (1.976(3) Å) and P-O distances (1.504(3) Å) are comparable to those in $[Me_2-$ HNCH₂CH₂NHMe₂][Zn₂(H₂PO₄)₆].³³

Conclusion

In summary, we have confirmed that the P-chiral secondary phosphine oxide 1H tautomerizes to the phosphinous acid ¹BuPhP(OH) that binds to Pd(II) with retention of configuration at phosphorus according to X-ray diffraction and NMR

Figure 5. Perspective view of one of the two independent molecules in the asymmetric unit of $[Cp*Ru\{(\eta^6-C_6H_5)(^{t}Bu)PO_2\}]_2(ZnCl_2)_2$ (**11**) (30% probability ellipsoids shown). Selected bond lengths (Å) and angles (deg): Zn(1)–O(1) 1.985(3), Zn(1)–O(2) 1.976(4), Zn(2)–O(3) 1.975(3), Zn(2)–O(4) 1.967(3), Zn(1)–Cl(1) 2.233(2), Zn(1)–Cl(2) 2.246(2), Zn(2)–Cl(3) 2.235(2); O(1)–Zn(1)–O(2) 108.6(1), O(3)–Zn-(2)–O(4) 106.6(1), Cl(1)–Zn(1)–Cl(2) 111.4(1), Cl(3)–Zn(2)–Cl(4) 110.4(1), O(1)–Zn(1)–Cl(1) 106.6(1), O(2)–Zn(1)–Cl(1) 111.2(1), O(1)–Zn(1)–Cl(2) 112.7(1), O(2)–Zn(1)–Cl(2) 106.4(1), O(3)–Zn(2)–Cl(3) 113.4(1), O(4)–Zn(2)–Cl(3) 107.7(1), O(3)–Zn(2)–Cl(4) 105.9(1), O(4)–Zn(2)–Cl(4) 112.9(1), O(2)#1–P(1)–O(1) 116.3(2), O(3)–P(2)–O(4)#2 117.7(2).

studies. This result provides a new methodology to design and synthesize metal complexes containing stereogenic phosphinous acid ligands that may find applications in asymmetric metal-catalyzed organic reactions. Recently, asymmetric hydrogenation of imines⁹ and allylic alkylation¹⁰ based on **1**H have been reported, demonstrating the potential of this air-stable, unidentate phosphinite ligand for asymmetric catalysis. In addition, the Pd(II) bisphosphinite complexes can serve as a chiral bidentate ligand that binds to metal ions to give heterobimetallic complexes. The study of catalytic activity of bimetallic complexes containing this P-chiral metal-bisphosphinite ligand is under way.

Acknowledgment. The financial support from the Hong Kong Research Grants Council (projects HKUST6125/01P and HKUST 6191/00P) and the Hong Kong University Grants Committee (Areas of Excellence Scheme, project AoE/P-10/01-1) is gratefully acknowledged.

Supporting Information Available: Listings of final atomic coordinates, anisotropic displacement parameters, bond lengths and angles for complexes **3**, **6**, **7**, **9**, and **11** (cif). This material is available free of charge via the Internet at http://pubs.acs.org.

⁽³³⁾ Rao, C. N.; Natarajan, S.; Neeraj, S. J. Am. Chem. Soc. 2000, 122, 2810.